首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6835篇
  免费   911篇
  国内免费   338篇
电工技术   221篇
技术理论   1篇
综合类   325篇
化学工业   723篇
金属工艺   119篇
机械仪表   245篇
建筑科学   254篇
矿业工程   49篇
能源动力   678篇
轻工业   353篇
水利工程   155篇
石油天然气   103篇
武器工业   53篇
无线电   730篇
一般工业技术   442篇
冶金工业   110篇
原子能技术   296篇
自动化技术   3227篇
  2024年   5篇
  2023年   44篇
  2022年   64篇
  2021年   140篇
  2020年   114篇
  2019年   127篇
  2018年   158篇
  2017年   275篇
  2016年   313篇
  2015年   329篇
  2014年   441篇
  2013年   396篇
  2012年   463篇
  2011年   531篇
  2010年   449篇
  2009年   468篇
  2008年   479篇
  2007年   396篇
  2006年   447篇
  2005年   458篇
  2004年   410篇
  2003年   383篇
  2002年   268篇
  2001年   157篇
  2000年   128篇
  1999年   106篇
  1998年   79篇
  1997年   76篇
  1996年   52篇
  1995年   47篇
  1994年   54篇
  1993年   44篇
  1992年   32篇
  1991年   33篇
  1990年   14篇
  1989年   15篇
  1988年   14篇
  1987年   12篇
  1986年   4篇
  1985年   7篇
  1984年   10篇
  1983年   5篇
  1982年   6篇
  1981年   6篇
  1979年   2篇
  1978年   4篇
  1977年   7篇
  1976年   6篇
  1975年   3篇
  1959年   2篇
排序方式: 共有8084条查询结果,搜索用时 15 毫秒
91.
This paper introduces a system for the direct editing of highlights produced by anisotropic BRDFs, which we call anisotropic highlights. We first provide a comprehensive analysis of the link between the direction of anisotropy and the shape of highlight curves for arbitrary object surfaces. The gained insights provide the required ingredients to infer BRDF orientations from a prescribed highlight tangent field. This amounts to a non‐linear optimization problem, which is solved at interactive framerates during manipulation. Taking inspiration from sculpting software, we provide tools that give the impression of manipulating highlight curves while actually modifying their tangents. Our solver produces desired highlight shapes for a host of lighting environments and anisotropic BRDFs.  相似文献   
92.
In this paper we present a novel approach to simulate image formation for a wide range of real world lenses in the Monte Carlo ray tracing framework. Our approach sidesteps the overhead of tracing rays through a system of lenses and requires no tabulation. To this end we first improve the precision of polynomial optics to closely match ground‐truth ray tracing. Second, we show how the Jacobian of the optical system enables efficient importance sampling, which is crucial for difficult paths such as sampling the aperture which is hidden behind lenses on both sides. Our results show that this yields converged images significantly faster than previous methods and accurately renders complex lens systems with negligible overhead compared to simple models, e.g. the thin lens model. We demonstrate the practicality of our method by incorporating it into a bidirectional path tracing framework and show how it can provide information needed for sophisticated light transport algorithms.  相似文献   
93.
This study aims to develop a controller for use in the online simulation of two interacting characters. This controller is capable of generalizing two sets of interaction motions of the two characters based on the relationships between the characters. The controller can exhibit similar motions to a captured human motion while reacting in a natural way to the opponent character in real time. To achieve this, we propose a new type of physical model called a coupled inverted pendulum on carts that comprises two inverted pendulum on a cart models, one for each individual, which are coupled by a relationship model. The proposed framework is divided into two steps: motion analysis and motion synthesis. Motion analysis is an offline preprocessing step, which optimizes the control parameters to move the proposed model along a motion capture trajectory of two interacting humans. The optimization procedure generates a coupled pendulum trajectory which represents the relationship between two characters for each frame, and is used as a reference in the synthesis step. In the motion synthesis step, a new coupled pendulum trajectory is planned reflecting the effects of the physical interaction, and the captured reference motions are edited based on the planned trajectory produced by the coupled pendulum trajectory generator. To validate the proposed framework, we used a motion capture data set showing two people performing kickboxing. The proposed controller is able to generalize the behaviors of two humans to different situations such as different speeds and turning speeds in a realistic way in real time.  相似文献   
94.
Image calibration requires both linearization of pixel values and scaling so that values in the image correspond to real‐world luminances. In this paper we focus on the latter and rather than rely on camera characterization, we calibrate images by analysing their content and metadata, obviating the need for expensive measuring devices or modeling of lens and camera combinations. Our analysis correlates sky pixel values to luminances that would be expected based on geographical metadata. Combined with high dynamic range (HDR) imaging, which gives us linear pixel data, our algorithm allows us to find absolute luminance values for each pixel—effectively turning digital cameras into absolute light meters. To validate our algorithm we have collected and annotated a calibrated set of HDR images and compared our estimation with several other approaches, showing that our approach is able to more accurately recover absolute luminance. We discuss various applications and demonstrate the utility of our method in the context of calibrated color appearance reproduction and lighting design.  相似文献   
95.
We present a spectral rendering technique that offers a compelling set of advantages over existing approaches. The key idea is to propagate energy along paths for a small, constant number of changing wavelengths. The first of these, the hero wavelength, is randomly sampled for each path, and all directional sampling is solely based on it. The additional wavelengths are placed at equal distances from the hero wavelength, so that all path wavelengths together always evenly cover the visible range. A related technique, spectral multiple importance sampling, was already introduced a few years ago. We propose a simplified and optimised version of this approach which is easier to implement, has good performance characteristics, and is actually more powerful than the original method. Our proposed method is also superior to techniques which use a static spectral representation, as it does not suffer from any inherent representation bias. We demonstrate the performance of our method in several application areas that are of critical importance for production work, such as fidelity of colour reproduction, sub‐surface scattering, dispersion and volumetric effects. We also discuss how to couple our proposed approach with several technologies that are important in current production systems, such as photon maps, bidirectional path tracing, environment maps, and participating media.  相似文献   
96.
Natural‐looking insect animation is very difficult to simulate. The fast movement and small scale of insects often challenge the standard motion capture techniques. As for the manual key‐framing or physics‐driven methods, significant amounts of time and efforts are necessary due to the delicate structure of the insect, which prevents practical applications. In this paper, we address this challenge by presenting a two‐level control framework to efficiently automate the modeling and authoring of insects’ locomotion. On the top level, we design a Triangle Placement Engine to automatically determine the location and orientation of insects’ foot contacts, given the user‐defined trajectory and settings, including speed, load, path and terrain etc. On the low‐level, we relate the Central Pattern Generator to the triangle profiles with the assistance of a Controller Look‐Up Table to fast simulate the physically‐based movement of insects. With our approach, animators can directly author insects’ behavior among a wide range of locomotion repertoire, including walking along a specified path or on an uneven terrain, dynamically adjusting to external perturbations and collectively transporting prey back to the nest.  相似文献   
97.
98.
Inverse Procedural Modelling of Trees   总被引:1,自引:0,他引:1  
Procedural tree models have been popular in computer graphics for their ability to generate a variety of output trees from a set of input parameters and to simulate plant interaction with the environment for a realistic placement of trees in virtual scenes. However, defining such models and their parameters is a difficult task. We propose an inverse modelling approach for stochastic trees that takes polygonal tree models as input and estimates the parameters of a procedural model so that it produces trees similar to the input. Our framework is based on a novel parametric model for tree generation and uses Monte Carlo Markov Chains to find the optimal set of parameters. We demonstrate our approach on a variety of input models obtained from different sources, such as interactive modelling systems, reconstructed scans of real trees and developmental models.  相似文献   
99.
In this paper, we propose a new continuous self‐collision detection (CSCD) method for a deformable surface that interacts with a simple solid model. The method is developed based on the radial‐view‐based culling method. Our method is suitable for the deformable surface that has large contact region with the solid model. The deformable surface may consist of small round‐shaped holes. At the pre‐processing stage, the holes of the deformable surface are filled with ghost triangles so as to make the mesh of the deformable surface watertight. An observer primitive (i.e. a point or a line segment) is computed so that it lies inside the solid model. At the runtime stage, the orientations of triangles with respect to the observer primitive are evaluated. The collision status of the deformable surface is then determined. We evaluated our method for several animations including virtual garments. Experimental results show that our method improves the process of CSCD.  相似文献   
100.
Multi‐view reconstruction aims at computing the geometry of a scene observed by a set of cameras. Accurate 3D reconstruction of dynamic scenes is a key component for a large variety of applications, ranging from special effects to telepresence and medical imaging. In this paper we propose a method based on Moving Least Squares surfaces which robustly and efficiently reconstructs dynamic scenes captured by a calibrated set of hybrid color+depth cameras. Our reconstruction provides spatio‐temporal consistency and seamlessly fuses color and geometric information. We illustrate our approach on a variety of real sequences and demonstrate that it favorably compares to state‐of‐the‐art methods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号